
32 The Delphi Magazine Issue 49

A Better Build Process
by Primoz Gabrijelcic

The command line is my tool,
my companion and my pas-

sion. Yes, I’m an old-timer! I’d
rather have my fingers on a key-
board, if possible. This extends to
compiling and building, too. In the
good old times, you just started a
compile or build from the com-
mand line and took a long nap. Or a
short one, if there was a compile
error somewhere at the beginning
of a project (that’s why my build
batch file always included some
form of beep as a final command).
Now one hardly gets a chance to
nap. Press F9 and all is done.

I had to admit, when I moved to
32-bit Windows, I stopped running
the compiler from the command
line. It was so nice just to press F9
and enjoy. Then more complicated
projects came and sometimes I
went back to basics. But I still com-
piled mostly in the IDE.

Then in October 1998 I found a
nice article in The Delphi Magazine:
Creating A Delphi Build Process by
Dave Collie. A helpful command
line introduction for younger mem-
bers of the Delphi community and
a reminder for me to stop compil-
ing in the IDE and return to basics.
So I studied a little, built some tools
and searched the net. Finally, I pre-
pared a basic build script, which I
now just modify a little for each
new project. So here it is, my
build.bat batch file, some tools
that I found or created, plus some
tips and tricks. Thanks a lot, Dave,
for pushing me back to CMD.EXE!

Release Build
The main motivation for command
line compiling is to make a distinc-
tion between debug and release
builds.

When I work on a project, I don’t
leave the IDE very much. I have var-
ious debugging DEFINEs set up in
Project|Options and I compile or
build strictly in the IDE. When
everything is working correctly (I
hope) I leave the IDE and create a
release build on the command line.

This enables me to set a com-
pletely different set of compiler
directives and DEFINEs. For exam-
ple, I always enable optimisation
for a release build, but never for
debugging purposes. My build
batch file also includes commands
to create distribution files in a spe-
cial directory, increment the build
number, compile my custom
resources, make a backup to the
network server, etc.

Up to Delphi 3, creating a release
build was a very simple process.
You just had to run DCC32 -B <pro-
ject name> and set the appropriate
parameters in dcc32.cfg (I keep a
copy of this file in each project
directory).

Delphi 4 messed things up a
little. The IDE silently manages a
file called <project>.cfg, which
includes all the settings specified
in Project|Options. This file is also
used by the DCC32 command line
compiler. Therefore, it doesn’t
help much if you specify -$O+ in
dcc32.cfg but have -$O- set in
<project>.cfg. DCC32 will use the
project-specific configuration file
and ignore any global settings. The
solution is simple: delete the pro-
ject configuration file before com-
piling. This creates no problems
for the Delphi IDE as the settings
are also in the project .dof file.

Version Information
The aspect that was keeping me
from creating a completely
self-contained build script was the
version information resource. I’m
using this (see Project|Options,
Version Info) in all my projects.
While working in the IDE every-
thing is very simple. You just set
version information, check Include
version information in project
and recompile. Version informa-
tion is written into a project
resource file (<project>.res) and
linked into executable. A piece of
cake.

There is no problem even when
working from the command line.

DCC32 will happily reuse the .res
file created by the Delphi IDE. But
what if the project resource is
deleted somehow? Then you have
to fire up Delphi, open up the pro-
ject options, close the dialog and
save all to create a new .res file. A
real pain. It would be nice if we
could create the project resource
from the command line, but Delphi
offers no solution.

I must admit that I did not see a
simple solution to this problem. I
played with it a little and then
forgot about it. I had to live with
the problem. Until the day when it
occurred to me that I could very
probably find the solution to my
problem on the internet. So I con-
nected to Deja News and searched.
To cut a long story short, I found a
solution. To be exact, I found the
solution. Only one on the whole
internet. Now that’s something!

The creator of that simple but
effective solution is Hector Santos
(Hector, if you’re reading this,
thanks a lot!). He noticed that all
the required information is stored
in the project settings file (.dof), so
he created a console application
that opened a settings file, read the
appropriate keys and created a
resource source file (.rc). After
that, you just have to run the
resource compiler (BRCC32,
included with Delphi), which com-
piles this source file to give us a
compiled resource file (.res). now
we have our resource.

Originally, though, Hector’s
solution had some problems.
Besides some bugs, it did not
include the project icon into the
resource, but that was really easy
to fix.

The resulting console program,
MakePrjRes, is shown in Listing 1.
It takes up to three parameters: the
name of settings file, the name of
project icon and the name of the
resource file to create. It makes a
resource file containing the ver-
sion information resource and the
icon resource, like the one shown

September 1999 The Delphi Magazine 33

{$APPTYPE CONSOLE}
{$H+,O+}
{Based on the work of Hector Santos}
program MakePrjRes;
uses
Windows, SysUtils, IniFiles;

const
HexNibble: array [0..15] of char = '0123456789ABCDEF';

function HexByte(b: byte): string;
begin
HexByte := HexNibble[b shr 4]+HexNibble[b AND $F];

end; { HexByte }
function HexWord(w: word): string;
begin
Result := HexByte(w shr 8)+HexByte(w AND $FF);

end; { HexWord }
function OptAddExtension(fName, ext: string): string;
begin
if Pos('.',fName) = 0 then
Result := fName+'.'+ext

else
Result := fName;

end; { OptAddExtension }
procedure MakeResource(dofFile, icoFile, rcFile: string);
var
rcf: text;
procedure WriteVersionResource;
var
ini : TIniFile;
sect : string;
sBuild : string;
locale : word;
codepage: word;
flags : string;

procedure AddFlag(fl: string);
begin
if flags <> '' then flags := flags + ' | ';
flags := flags + fl;

end;
begin
// TIniFile opens file in windows dir by default!
if Pos('\',dofFile) = 0 then
dofFile := '.\'+dofFile;

if not FileExists(dofFile) then begin
Writeln('MakeProjectResource 1.01');
Writeln('file ',dofFile,' does not exist!');
Halt(1);

end;
ini := TIniFile.Create(dofFile);
try
Writeln(rcf, 'VS_VERSION_INFO VERSIONINFO');
sect:='Version Info';
sBuild:=ini.ReadString(sect, 'MajorVer', '1');
sBuild:=
sBuild+','+ini.ReadString(sect,'MinorVer','0');

sBuild:=
sBuild+','+ini.ReadString(sect,'Release','0');

sBuild:=
sBuild+','+ini.ReadString(sect,'Build','0');

Writeln(rcf, 'FILEVERSION ', sBuild);
Writeln(rcf, 'PRODUCTVERSION ', sBuild);
flags := '';
if ini.ReadInteger(sect,'Debug',0) = 1 then
AddFlag('VS_FF_DEBUG');

if ini.ReadInteger(sect,'PreRelease',0) = 1 then
AddFlag('VS_FF_PRERELEASE');

if ini.ReadInteger(sect,'Special',0) = 1 then
AddFlag('VS_FF_SPECIALBUILD');

if ini.ReadInteger(sect,'Private',0) = 1 then
AddFlag('VS_FF_PRIVATEBUILD');

if flags = '' then
flags := '0';

sect:='Version Info Keys';
Writeln(rcf, 'FILEFLAGSMASK VS_FFI_FILEFLAGSMASK');
Writeln(rcf, 'FILEFLAGS ', flags);
Writeln(rcf, 'FILEOS VFT_APP');
Writeln(rcf, 'FILESUBTYPE VFT2_UNKNOWN');
Writeln(rcf, 'BEGIN');
Writeln(rcf, ' BLOCK "VerFileInfo"');
Writeln(rcf, ' BEGIN');
locale := Ini.ReadInteger(sect,'Locale',$409);
codepage := Ini.ReadInteger(sect,'CodePage',1252);
Writeln(rcf, ' Value "TRANSLATION",
0x',HexWord(locale),', ',codepage);

Writeln(rcf, ' END');
Writeln(rcf, ' BLOCK "STRINGFILEINFO"');
Writeln(rcf, ' BEGIN');

Writeln(rcf, ' BLOCK
"',HexWord(locale),HexWord(codepage),'"');

Writeln(rcf, ' BEGIN');
Writeln(rcf, ' VALUE "CompanyName",
"',Ini.ReadString(Sect,'CompanyName',''),' \0"');

Writeln(rcf, ' VALUE "FileDescription",
"',Ini.ReadString(Sect,'FileDescription',''),
'\0"');

Writeln(rcf, ' VALUE "FileVersion",
"',Ini.ReadString(Sect,'FileVersion',sBuild),
' \0"');

Writeln(rcf, ' VALUE "InternalName",
"',Ini.ReadString(Sect,'InternalName',''),' \0"');

Writeln(rcf, ' VALUE "LegalCopyright",
"',Ini.ReadString(Sect,'LegalCopyRight',''),
' \0"');

Writeln(rcf, ' VALUE "LegalTrademarks",
"',Ini.ReadString(Sect,'LegalTrademarks',''),
' \0"');

Writeln(rcf, ' VALUE "OriginalFileName",
"',Ini.ReadString(Sect,'OriginalFileName',''),
' \0"');

Writeln(rcf, ' VALUE "ProductName",
"',Ini.ReadString(Sect,'ProductName',''),' \0"');

Writeln(rcf, ' VALUE "ProductVersion",
"',Ini.ReadString(Sect,'ProductVersion',''),
' \0"');

Writeln(rcf, ' VALUE "Comments",
"',Ini.ReadString(Sect,'Comments',''),' \0"');

Writeln(rcf, ' END');
Writeln(rcf, ' END');
Writeln(rcf, 'END');

finally
ini.free; end;

end; { WriteVersionResource }
procedure WriteIconResource;
begin
if not FileExists(icoFile) then begin
Writeln('MakeProjectResource 1.01');
Writeln('file ',icoFile,' does not exist!');
Halt(1);

end;
Writeln(rcf,'MAINICON ICON "',icoFile,'"');

end; { WriteIconResource }
begin
AssignFile(rcf, rcFile);
Rewrite(rcf);
if icoFile <> '-' then
WriteIconResource;

if dofFile <> '-' then begin
if icoFile <> '-' then Writeln(rcf);
WriteVersionResource;

end;
CloseFile(rcf);

end; { MakeResource }
procedure Usage;
begin
Writeln('MakeProjectResource 1.01');
Writeln(
'Usage: makeprjres dof_file ico_file [rc_file]');

Writeln(
' makeprjres - ico_file [rc_file]');

Writeln(
' makeprjres dof_file - [rc_file]');

Halt(1);
end; { Usage }

var
dofFile: string;
icoFile: string;
rcFile : string;

begin
if (ParamCount < 2) or (ParamCount > 3) then
Usage;

dofFile := ParamStr(1);
icoFile := ParamStr(2);
if icoFile <> '-' then begin
OptAddExtension(icoFile,'ICO');
rcFile := ChangeFileExt(icoFile,'.RC');

end;
if dofFile <> '-' then begin
OptAddExtension(dofFile,'DOF');
rcFile := ChangeFileExt(dofFile,'.RC');

end;
if ParamCount = 3 then
rcFile := OptAddExtension(ParamStr(3),'RC');

MakeResource(dofFile, icoFile, rcFile);
end.

➤ Listing 1

in Listing 2. It is also included on
this month’s disk of course.

Build Batch File
Let’s take a look at a real-life build
script now. It prepares a release
build for my freeware Delphi

profiler, GpProfile. For your conve-
nience it uses only plain
COMMAND.COM functionality. It is
of course possible to create much
smarter scripts in the 4DOS or 4NT
command language, VBScript,
Perl, or whatever, but I found that

COMMAND.COM works for me.
The script is displayed in its
entirety in Listing 3. I will use label
names (eg :start) to refer to
various parts of this script.

34 The Delphi Magazine Issue 49

MAINICON ICON "gpprofile.ico"
VS_VERSION_INFO VERSIONINFO
FILEVERSION 1, 3, 0, 5
PRODUCTVERSION 1, 3, 0, 5
FILEFLAGSMASK VS_FFI_FILEFLAGSMASK
FILEFLAGS 0
FILEOS VFT_APP
FILESUBTYPE VFT2_UNKNOWN
BEGIN
BLOCK "VerFileInfo"
BEGIN
Value "TRANSLATION", 0x0409, 1252
END
BLOCK "STRINGFILEINFO"
BEGIN
BLOCK "040904E4"
BEGIN
VALUE "CompanyName", " \0"
VALUE "FileDescription", "Profiler for Delphi 2, 3, and 4. \0"
VALUE "FileVersion", "1.3.0.5 \0"
VALUE "InternalName", "GpProfile \0"
VALUE "LegalCopyright", "(c) 1998, 1999 Primoz Gabrijelcic \0"
VALUE "LegalTrademarks", " \0"
VALUE "OriginalFileName", " \0"
VALUE "ProductName", "GpProfile \0"
VALUE "ProductVersion", "1.3 \0"
VALUE "Comments", " \0"
END

END
END

@echo off
:start
set build_justone=1
if %1.==gpprof. goto gpprof
if %1.==gppunreg. goto gppunreg
set build_justone=0

:gpprof
echo Building GpProf
echo.
if exist gpprof.exe del gpprof.exe >nul
if exist gpprof.cfg del gpprof.cfg >nul

:gpprof_hpj2inc
copy help\95nt\gpprof.hlp . >nul
copy help\95nt\gpprof.cnt . >nul
hpj2inc help\95nt\gpprof.hpj help.inc >build.log
if not errorlevel 1 goto gpprof_brcc_baggage
goto error

:gpprof_brcc_baggage
brcc32 -r baggage.rc >build.log
if not errorlevel 1 goto gpprof_makeproj
goto error

:gpprof_makeproj
makeprjres gpprof.dof gpprofile.ico gpprof.rc >build.log
if not errorlevel 1 goto gpprof_brcc
goto error

:gpprof_brcc
brcc32 gpprof.rc >build.log
if not errorlevel 1 goto gpprof_dcc
goto error

:gpprof_dcc
dcc32 -b -h- -w- -$r-,q-,c-,o+ gpprof.dpr >build.log
if not errorlevel 1 goto gpprof_dccok
head build.log 1
tail build.log 10
goto error_nolog

:gpprof_dccok
tail build.log 1
incver gpprof.dof
echo.

:gpprof_ok
aspack gpprof.exe /r+ /b+ /d+ /e+

if not exist g:\programs\gpprofile\gpprof.exe md
g:\programs\gpprofile >nul

copy gpprof.exe g:\programs\gpprofile >nul
copy gpprof.hlp g:\programs\gpprofile >nul
copy gpprof.cnt g:\programs\gpprofile >nul
copy gpprof.pas x:\mstpl\gp >nul
copy gpprofh.pas x:\mstpl\gp >nul
if %build_justone=1 goto loop

:gppunreg
echo Building gppUnreg
echo.
if exist gppunreg.exe del gppunreg.exe >nul
if exist gppunreg.cfg del gppunreg.cfg >nul

:gppunreg_dcc
dcc32 -b -h- -w- -$r-,q-,c-,o+ %1 %2 %3 %4 %5 %6 %7
gppunreg.dpr >build.log

if not errorlevel 1 goto gppunreg_dccok
head build.log 1
tail build.log 10
goto error_nolog

:gppunreg_dccok
tail build.log 1
echo.

:gppunreg_ok
if %build_justone=1 goto loop

:loop
shift
if %1.=. goto OK
goto start

:error
type build.log | more

:error_nolog
echo.
echo Error!
goto exit

:OK
if exist build.log erase build.log >nul
set build_justone=
echo Program(s) built successfully!

:exit

➤ Listing 2

➤ Listing 3

The first thing to point out is that
all my build scripts can create
more than one executable. Even
more, I can select with a command
line parameter which programs
should be built. The logic to imple-
ment this behaviour is pro-
grammed in the blocks :start and
:loop. If we converted build.bat
into pseudocode, it would look like
Listing 4.

This approach offers great flexi-
bility. The code is modularised

(each compilation block only deals
with one part of the project) and
parts can be compiled at will,
which is very useful when you have
to troubleshoot problems which
do not occur in the debug build.

All the compilation blocks follow
the same structure. First, I delete
the project configuration file (for
the reasons I already mentioned)
and the old executable (so I can see
at a glance if the compilation was
successful). Then I prepare the
files needed for the project, com-
pile it and do any required post

processing. But let’s take a look at
these steps one by one.

As the GpProfile distribution
contains a help file, it is prepared
first. I copy the .hlp and .cnt files
from the folder with the last help
version. Then I run hpj2inc, a
simple program that extracts help
topic constants from a help pro-
ject (.hpj) and stores them into a
simple Pascal include file (.inc).
That way, I can use symbolic
names to access the help file from
the program. You can use hpj2inc
with your projects, too, as it is
included on this month’s disk.

This is probably a good moment
to examine the error checking in
build.bat. When calling any exter-
nal command I make sure that the
output is redirected into a file
(build.log) and that the error code
is checked immediately after con-
trol is returned to the batch file. If
an error is found, control is trans-
ferred to the :error block, where
this log file is displayed on the
screen (using type build.log |
more).

Next, I prepare all resource files
used in the program (see
:gpprof_brcc_baggage). First, I
compile baggage.rc, a very simple

36 The Delphi Magazine Issue 49

:start
Fetch first command line parameter.
If parameter is empty, set compile all flag.

:jump
If parameter is not empty, jump to appropriate compilation block.

:program_1
Compile first program.
If not compile all jump to :loop.

...
:program_n
Compile nth program.
If not compile all jump to :loop.

:loop
Fetch next parameter.
If parameter is empty, exit.
Else jump to :jump.

➤ Above: Listing 4 ➤ Below: Listing 5

file that just includes two rich text
format files:

#include “baggage.inc”
IDD_OPENSOURCE RCDATA
“opensource.rtf”

IDD_WHATSNEW RCDATA
“whatsnew.rtf”

The file baggage.inc stores sym-
bolic constants used to access this
file from the program:

const
IDD_WHATSNEW = 1;
IDD_OPENSOURCE = 2;

I display those files in the About
box. This approach enables me to
create a simple program history as
a formatted RTF file and then just
load it into a RichEdit component:
see Listing 5.

The next two sections
(:gpprof_makeproj and :gpprof_
brcc) are easy to understand. I
create the source for the project
resource from the .dof and .ico
files, then I compile it.

Next comes the compilation part
(:gpprof_dcc). When making a
release build I always recompile all
sources (including third party
components). Error processing is
slightly different in this case. If
compilation fails, I display the first
line and last ten lines of the result-
ing log. The last ten lines are usu-
ally enough to identify the problem
(if not, I can open the log file) and
the first line identifies the compiler
so I can be sure I’m using the right
version of my tools. If compilation
succeeds, I display only the last
line of the log file, the one that con-
tains the compilation statistics:

{$R BAGGAGE.RES}
{$I BAGGAGE.INC}
var
verInfo: TGpVersionInfo;
stream : TResourceStream;

begin
stream := TResourceStream.CreateFromID(HInstance, IDD_WHATSNEW, RT_RCDATA);
try RichEdit1.Lines.LoadFromStream(stream);
finally stream.Free; end;

end;

29926 lines, 7.39 seconds,
697272 bytes code, 10705
bytes data.

and then call the program IncVer,
which increments the build
number by one. How? Very simple,
it opens the project settings file
(.dof), locates the appropriate line
and increments the last number in
it. For this trick to work, the project
must not be open in the Delphi IDE
at that time, as the IDE silently
overwrites the .dof file when the
project is closed. For that reason, I
always do Close All in the IDE and
only then run build.bat.

Head, Tail and IncVer are three
simple console applications, all
included on this month’s disk.
Head and Tail (shown in Listing 6)
are good examples of what can be
done in a few lines with some VCL
classes. They are also a good exam-
ple of how not to program, so kids,
don’t do this in real world applica-
tions, Ok?

The post-processing part is usu-
ally different for each application.
For GpProfile I compress the .exe
with a great shareware packer:
ASPack (www.entechtaiwan.com/
aspack.htm). The main reason for
this compression is that I found
that the distribution package is
smaller if I compress the .exe first,
even though the installer does its
own compression. Every byte
counts if your users have to down-
load the app from the internet.

At the end, I copy all the distribu-
tion files into a special folder
where they are waiting to be
packed into an installation pack-
age. I do most of installing with the
excellent INF-Tool, which has the
smallest footprint of all installa-
tion packages (remember, each
byte counts). For more details
check http://inner-smile.com.

That is about it. We have walked
the build process together from
start to finish, and now you’re
ready to do it yourself. So go forth
and use the command line!

Primoz Gabrijelcic is an avid com-
mand line user, who hopes that
the good old DOS box will not be
removed from future Windows
incarnations. He likes to create
small command line utilities,
which can be freely used, reused,
and abused (that goes for all the
code published in this article,
too).

{$APPTYPE Console}
program tail;
uses
SysUtils, Classes;

var
str : TStringList;
i : integer;
first: integer;

begin
str := TStringList.Create;
try
str.LoadFromFile(ParamStr(1));
first := str.Count-StrToIntDef(ParamStr(2),20);
if first < 0 then first := 0;
for i := first to str.Count-1 do Writeln(str[i]);

finally
str.Free;

end;
end.

➤ Listing 6

	Release Build
	Version Information
	Build Batch File

